Using User Defined Types in Visual Basic
One of the most useful things about the Visual Basic Interface Development Environment is the Drop-down context sensitive lists. When I type the keyword "Me" followed by a ".", I get a list of all of the properties, and methods available for the Me object. (For those of you who have not discovered it, "Me" in VB is a keyword that is translated as "The form that I am working in.") This powerful feature enables me to code almost as fast as I think…something I could never do if I were actually having to type everything in!

But did you know that you can create your own custom drop-down list items? There are a couple of ways to accomplish this, one is fairly difficult and the other is very easy. The difficult method involves creating a class module, defining all of its properties and methods, and then creating an object based on that class module. This is VERY powerful code, since you can create as many of the objects as you need based on the same class module…therefore making them identical in code, but different in data. But I am not here to teach you class module programming…and I would need a lot more room to do it in if I were.

We are going to keep it simple and create our custom drop-down items the easy way…by creating a User Defined Data Type. This may sound hard, but it really isn't. Before we get in to how to create a User Defined Type though, an explanation of what they are is in order.

If you are a very experienced programmer, you already know that there are several data types in Visual Basic…String, Integer, Long Integer, Double, Date, Boolean, and Variant. You may also know that you can create arrays of these types. So you can store multiple values in the same variable. This is useful for storing lists of similar items for processing, but it is not very flexible.

Let's make an example. I want a storage place to hold all of my application's runtime settings. Since I will be referencing them many times in any given second, I need them in memory, not on disk, and registry calls will be MUCH too slow. To load the settings into memory, I will need to create a variable to hold them. I could do this:

Dim Settings(10) As String
Settings(0) = "MyApp"

Settings(1) = "c:\myapp\data\"

Settings(2) = "John Smith"

Settings(3) = ...

This would work, but you would have to remember that setting 2 is the username. If you accidentally typed a 3 instead, you could easily get the wrong information in that slot and break your application. What we need is something easier to reference. Also, I need to store an expiration date in my settings. This means that I have to either declare the array as a Variant (risky!) or save it as a string and do a conversion every time I use it. So I am limited to the data type that I chose.

In comes that User Defined Type…the best little secret of Visual Basic. With it, I can create an indexed array of any data types that I want and still keep them in one neat little package. As an added bonus, instead of remembering:

UserName = Settings(2)

I can simply type:

UserName = Settings.UserName

How is this possible? Wait…it gets better. When I typed the ".", I got a dropdown list showing me all of the elements of Settings:

[image: image1.png]Settings.
' AllowChanges
e AppID

e CunrentPath
e ExpirationDate
e Password
' UsageCount

WOW! How did I do that? Is that some sort of registry hack? No, it is a built in feature of Visual Basic that I bet you have never even heard of before now..the good ol' User Defined Type at work. Now that you have seen it in action, I am sure you are ready to make your own user defined types. So let's get started.

Creating a type:

To build your type, start out by declaring it and giving it a name. Remember, this is going to act as a template for your actual variables, so name it something generic. I named mine SettingInfo.

Type SettingInfo
 AppID As String

 CurrentPath As String

 UserName As String

 Password As String

 ExpirationDate As Date

 UsageCount As Integer

 AccessLevel As Integer

 AllowChanges As Boolean

End Type
Once you have declared your type and defined it like the example above, you can create a variable based on it:

Dim Settings As SettingInfo

In my case I wanted this information to be available throughout my application, so I declared it as a public variable in a module:

Public Settings As SettingInfo

What you are doing here is really telling VB "I want to make a new variable based on the SettingInfo template and I want to name it Settings."

You are finished! Now all you have to do is reference the variable you declared and PRESTO! You have your list.

Working with types:

Once you have created your type and declared your variable, you can begin to work with it. Of course like any variable, it is empty when initialized, so the first step is to add some useful data. In my case, I read the values from the registry and wrote them to my type:

Function TestApp()

With Settings

 .UserName = GetSetting("MyApp", "Startup", "UserName")

 .AccessLevel = GetSetting("MyApp", "Startup", "AccessLevel")

 .ExpirationDate = GetSetting("MyApp", "Startup", "Expires")

 .AllowChanges = True

 .UsageCount = GetSetting("MyApp", "Startup", "Uses")

End With

You can also do this:

Settings.Password = InputBox ("Enter Password:")

Think of a user defined type as a package to hold all of those variables that are used in a common way. You could just as easily create a "Customer" Type.

Now all you have to do to access those values is type "Settings." And pick from the list!

[image: image2.png]UserName = Settings.
' AllowChanges
e AppID

e CunrentPath
e ExpirationDate
e Password
' UsageCount

To prove that you are really storing the data, do this:

Settings.UserName = "John Smith"

MsgBox "Current User: " & Settings.UserName

And run your code. You should get this:

[image: image3.png]Curent User: John Smith

(i

This has been a very basic tutorial to introduce you to the user defined types. This is a very powerful feature of VB and I have yet to find someone who uses it regularly. I hope this has been of benefit to you. If you would like more information about using types and some sample code showing how to use multiple instances of the same type, please let it be known in the comments for this tutorial on the Planet web site. If I get enough responses, I will elaborate on it.

M@

_1020810552.bin

_1020811471.bin

