PRIVATE
How to Limit User Input in VB Combo Box with SendMessage API

Article ID: Q72677

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for Windows, versions 2.0 and 3.0

- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY

You can specify a limit to the amount of text that can be entered into a combo box by calling SendMessage (a Windows API function) with the EM_LIMITTEXT constant.

MORE INFORMATION

The following method can be used to limit the length of a string entered into a combo box. Check the length of a string inside a KeyPress event for the control, if the length is over a specified amount, then the formal argument parameter KeyAscii will be set to zero.

Or, the preferred method of performing this type of functionality is to use the SendMessage API function call. After you set the focus to the desired edit control, you must send a message to the window's message queue that will reset the text limit for the control. The argument EM_LIMITTEXT, as the second parameter to SendMessage, will set the desired text limit based on the value specified by the third arguments. The SendMessage function requires the following parameters for setting the text limit:

 SendMessage (hWnd%,EM_LIMITTEXT, wParam%, lParam)

 wParam% Specifies the maximum number of bytes that can be

 entered. If the user attempts to enter more characters,

 the edit control beeps and does not accept the characters.

 If the wParam parameter is zero, no limit is imposed on

 the size of the text (until no more memory is available).

 lParam Is not used.

The following steps can be used to implement this method:

1. Create a form called Form1.

2. Add a combo box called Combo1 to Form1.

3. Add the following code to the general declarations section of Form1:

 '*** Note: Each Declare statement must be on just one line:

 Declare Function GetFocus% Lib "user" ()

 Declare Function SendMessage& Lib "user" (ByVal hWnd%,

 ByVal wMsg%,

 ByVal wParam%,

 lp As Any)

 Const WM_USER = &H400

 Const EM_LIMITTEXT = WM_USER + 21

4. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()

 Form1.Show ' Must show form to work on it.

 Combo1.SetFocus ' Set the focus to the list box.

 cbhWnd% = GetFocus() ' Get the handle to the list box.

 TextLimit% = 5 ' Specify the largest string.

 retVal& = SendMessage(cbhWnd%, EM_LIMITTEXT, TextLimit%, 0)

 End Sub

5. Run the program and enter some text into the combo box. You will

 notice that you will only be able to enter a string of five

 characters into the combo box.

Additional reference words: 1.00 2.00 3.00 KBCategory: kbprg kbcode KBSubcategory: APrgOther

PRIVATE
How to Programmatically Display or Hide a VB Combo Box List

Article ID: Q85991

The information in this article applies to:

· Standard and Professional Editions of Microsoft Visual Basic for Windows, versions 2.0 and 3.0

· Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY

The list of a Visual Basic drop-down combo box (Style=0 or 2) is usually opened and closed by using a mouse. However, you can also open and close the list of a combo box programmatically by using the Windows SendMessage function as described below.

However, there is an easy way. In visual basic, when a drop-down combo box has the focus, you can press ALT-DOWN to open it up. Therefore, you can use SendKeys to send these keys to the combo box, as in this example:

To do this programmatically, use the following code to change focus to the combo box and send the necessary keystroke:

 combo1.SetFocus

 SendKeys "%{Down}"

MORE INFORMATION

The CB_SHOWDROPDOWN constant can be used with the SendMessage function to programmatically open or close the list of a Visual Basic drop-down combo box of Style=0 or Style=2 (Style=1 always has the list displayed). The following steps demonstrate how to open the list of a drop-down combo box:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Place a combo box (Combo1) and a command button (Command1) on Form1.

3. Add the following declarations and constants to the general

 Declarations section of Form1:

 ' Enter each Declare statement as one, single line:

 Declare Function GetFocus Lib "User" () as Integer

 Declare Function GetParent Lib "User" (ByVal hWnd as Integer)

 as Integer

 Declare Function SendMessage Lib "User" (ByVal hWnd as Integer,

 ByVal wMsg as Integer, ByVal wParam as Integer,

 ByVal lParam as Any) as Long

 Global Const WM_USER = &H400

 Global Const CB_SHOWDROPDOWN = WM_USER + 15

4. Add the following code to the Form1 Load event procedure to put

 some items in the combo box:

 Sub Form_Load ()

 Combo1.AddItem "apple"

 Combo1.AddItem "orange"

 Combo1.AddItem "banana"

 End Sub

5. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()

 Combo1.SetFocus

 cbhWnd% = GetFocus ()

 cblisthWnd% = GetParent (cbhWnd%)

 cbFunc% = -1 'cbFunc% = -1 displays the list

 'cbFunc% = 0 hide the list

 retval& = SendMessage (cblisthWnd%, CB_SHOWDROPDOWN, cbFunc%, 0&)

 End Sub

6. Press the F5 key to run the program. Click Command1 to display the list

 of the combo box.

If Style=2 for the combo box, there is no need to use the GetParent function. Use the return value of the GetFocus (cbhWnd% in the above example) call as the first parameter of the SendMessage function.

NOTE: The list of a combo box with Style=0 or 2 will close when the combo box loses focus.

Additional reference words: 1.00 2.00 3.00 KBCategory: kbprg kbcode KBSubcategory: PrgCtrlsStd

PRIVATE

Last Reviewed: June 21, 1995
© 1999 Microsoft Corporation. All rights reserved. Terms of Use.

PRIVATE
How to Quickly List the Contents of a Directory

Article ID: Q119396

The information in this article applies to:

· Standard and Professional Editions of Microsoft Visual Basic for Windows, version 3.0

SUMMARY

Although Visual Basic has both built-in functions (Dir$ and Dir) and a built-in control (File list box) for listing the files in a directory, using a standard list box and the Windows API SendMessage function lists files in a directory much more quickly.

NOTE: Replacing the File list box or Dir command using the technique described in this article will only improve performance perceptibly if the File list box or Dir command is used heavily in the application.

MORE INFORMATION

This technique uses the LB_DIR message for list boxes to add a list of filenames to a list box. To do this, call the Windows API SendMessage function. The SendMessage function requires the following parameters to list the files:

 SendMessage (hWnd%, LB_DIR, wParam%, lParam)

where

 hWnd% is the handle of the list box.

 wParam% is an integer that specifies the permissible file

 attributes.

 lParam is a long pointer to a string containing the full path and

 file name to add to the list. This can include wildcards.

The wParam% argument can be any combination of the following values:

Value Meaning

DDL_ARCHIVE File has been archived.

DDL_DIRECTORY File must be a directory name.

DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only

 files of the specified type are listed. Otherwise,

 files of the specified type are listed in addition to

 files that do not match the specified type.

DDL_HIDDEN File must be hidden.

DDL_READONLY File must be read only.

DDL_READWRITE File can be read from or written to.

DDL_SYSTEM File must be a system file.

Step-by-Step Example

1. Start Visual Basic; or, choose New Project from the File menu

 (ALT+F, N) if Visual Basic is already running. Form1 is created by

 default.

2. Add a list box (List1) to Form1.

3. Add a new code module to the project by choosing New Module from the

 File menu.

4. Add the following code to the new code module:

 ' Enter the Declare statement on one single line:

 Declare Function SendMessage Lib "user" (ByVal hwnd As Integer,

 ByVal wMsg As Integer,

 ByVal wParam As Integer,

 lParam As Any) As Long

5. Declare the following constants in the General Declaration section of

 the code module

 Global Const WM_USER = &H400

 Global Const LB_DIR = WM_USER + 14

 Global Const DDL_ARCHIVE = &H0020

 Global Const DDL_DIRECTORY = &H0010

 Global Const DDL_EXCLUSIVE = &H8000

 Global Const DDL_HIDDEN = &H0002

 Global Const DDL_READONLY = &H0001

 Global Const DDL_READWRITE = &H0000

 Global Const DDL_SYSTEM = &H0004

6. To fill the list box with all of the files, which may or may not be

 hidden, in the C:\WINDOWS directory, place the following code in the

 Form_Load event of Form1:

 Sub Form_Load ()

 List1.Clear

 s$ = "C:\WINDOWS*.*"

 i% = SendMessage(List1.hWnd, LB_DIR, DDL_HIDDEN, ByVal s$)

 End Sub

7. Press the F5 key to run the application.

The contents of the list box can be manipulated by using any of the standard list-box methods. In cases where the filenames are being used elsewhere in the code (for example, in an outline control), the Visible property of the list box can be set to False so that the list box will not be displayed.

Additional reference words: speed faster 3.00 KBCategory: kbprg kbcode KBSubCategory: PrgOptTips

PRIVATE

Last Reviewed: June 21, 1995
© 1999 Microsoft Corporation. All rights reserved. Terms of Use.

PRIVATE
How to Quickly Search a List Box

Article ID: Q141027

4.00 WINDOWS

 kbhowto

The information in this article applies to:

· Standard, Professional, and Enterprise Editions of Microsoft Visual Basic, 16-bit and 32-bit, for Windows, version 4.0

SUMMARY

A popular item in a user interface is to "link" a text box to a list box so that as the user types text into the text box, the nearest match in the list box is selected. Although this technique can be implemented fairly easily using pure Visual Basic code, the Windows API provides a quick and easy way of doing this.

MORE INFORMATION

The following technique uses the LB_FINDSTRING message for a list box to locate a partial match for a string in a list box. To do this, call the Windows API SendMessage function. The SendMessage function requires the following parameters to list the files:

SendMessage (hWnd,LB_FINDSTRING, wParam, lparam)

where

hWnd is the hWnd of the list box.

wParam is an integer that specifies the starting point for the search.

 Use -1 to search the whole list box.

Lparam is a long pointer to the string to find.

Example to Demonstrate Searching a List Box

1. Start a new project in Visual Basic. Add a text box (Text1) and a list

 box (list1) to Form1.

2. On the Visual Basic Insert menu, choose module to add a new code module

 to the project. Add the following code to the General declarations

 section of module1:

 #If Win32 Then

 Declare Function SendMessage Lib "user32" Alias "SendMessageA" _

 (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As _

 Integer, ByVal lParam As Any) As Long

 #Else

 Declare Function SendMessage Lib "user" (ByVal hwnd As Integer, _

 ByVal wMsg As Integer, ByVal wp As Integer, lp As Any) As Long

 #End If

 Public Const LB_FINDSTRING = &H18F

3. In the Form_Load method for the form, add the following items to the

 list box using the following code:

 Sub Form_Load()

 List1.Clear

 List1.AddItem "Apples"

 List1.AddItem "Banana"

 List1.AddItem "Bread"

 List1.AddItem "Break"

 End Sub

4. In the Change method of the text box, add the following code:

 Sub Text1_Change()

 List1.ListIndex = SendMessage(List1.hWnd, LB_FINDSTRING, -1, _

 ByVal Cstr(Text1.Text))

 End Sub

If you run the code, typing text into the text box selects the first item in the list that matches the text in the text box.

Additional reference words: 4.00 vb4win vb4all

KBCategory: kbhowto

KBSubCategory: APrgDataAcc

Keywords : kbcode kbhowto

Version : 4.00

Platform : WINDOWS

PRIVATE

Last Reviewed: May 21, 1998
© 1999 Microsoft Corporation. All rights reserved. Terms of Use.

How to Read a Large File into Memory by Calling API Functions

Article ID: Q100513

The information in this article applies to:

- The Visual Basic programming system for Windows, versions 2.0 and 3.0 - Microsoft Windows, version 3.1 or higher

SUMMARY

This article demonstrates how to call Windows API functions to read a file of any size (including a huge file such as a bitmap) into memory and how to write a block of memory (including a huge memory block) out to a file.

The information in this article applies only to Windows version 3.1 or higher because it uses Windows API functions introduced in Windows version 3.1.

MORE INFORMATION

Perform the following steps to create a sample program that demonstrates how to read a large file into memory and write that memory back out to a file:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)

 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created.

3. Add the following code to the general-declarations section of Module1:

 ' OpenFile() Structure

 Type OFSTRUCT

 cBytes As String * 1

 fFixedDisk As String * 1

 nErrCode As Integer

 reserved As String * 4

 szPathName As String * 128

 End Type

 ' OpenFile() Flags

 Global Const OF_READ = &H0

 Global Const OF_WRITE = &H1

 Global Const OF_READWRITE = &H2

 Global Const OF_SHARE_COMPAT = &H0

 Global Const OF_SHARE_EXCLUSIVE = &H10

 Global Const OF_SHARE_DENY_WRITE = &H20

 Global Const OF_SHARE_DENY_READ = &H30

 Global Const OF_SHARE_DENY_NONE = &H40

 Global Const OF_PARSE = &H100

 Global Const OF_DELETE = &H200

 Global Const OF_VERIFY = &H400

 Global Const OF_CANCEL = &H800

 Global Const OF_CREATE = &H1000

 Global Const OF_PROMPT = &H2000

 Global Const OF_EXIST = &H4000

 Global Const OF_REOPEN = &H8000

 ' Enter each of the following Declare statements on one, single line:

 Declare Function OpenFile Lib "Kernel" (ByVal lpFilename As

 String, lpReOpenBuff As OFSTRUCT, ByVal wStyle As Integer) As Integer

 Declare Function hRead Lib "kernel" Alias "_hread" (ByVal hFile As

 Integer, lpMem As Any, ByVal lSize As Long) As Long

 Declare Function hWrite Lib "Kernel" Alias "_hwrite" (ByVal hFile

 As Integer, lpMem As Any, ByVal lSize As Long) As Long

 Declare Function lClose Lib "kernel" Alias "_lclose" (ByVal hFile

 As Integer) As Integer

 ' Global Memory Flags

 Global Const GMEM_FIXED = &H0

 Global Const GMEM_MOVEABLE = &H2

 Global Const GMEM_NOCOMPACT = &H10

 Global Const GMEM_NODISCARD = &H20

 Global Const GMEM_ZEROINIT = &H40

 Global Const GMEM_MODIFY = &H80

 Global Const GMEM_DISCARDABLE = &H100

 Global Const GMEM_NOT_BANKED = &H1000

 Global Const GMEM_SHARE = &H2000

 Global Const GMEM_DDESHARE = &H2000

 Global Const GMEM_NOTIFY = &H4000

 Global Const GMEM_LOWER = GMEM_NOT_BANKED

 Global Const GHND = (GMEM_MOVEABLE Or GMEM_ZEROINIT)

 Global Const GPTR = (GMEM_FIXED Or GMEM_ZEROINIT)

 ' Enter each of the following Declare statements on one, single line:

 Declare Function GlobalAlloc Lib "Kernel" (ByVal wFlags As

 Integer, ByVal dwBytes As Long) As Integer

 Declare Function GlobalLock Lib "Kernel" (ByVal hMem As Integer)

 As Long

 Declare Function GlobalUnlock Lib "Kernel" (ByVal hMem As Integer)

 As Integer

 Declare Function GlobalFree Lib "Kernel" (ByVal hMem As Integer)

 As Integer

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()

 Dim InpFile As String

 Dim OutFile As String

 Dim hFile As Integer

 Dim fileStruct As OFSTRUCT

 Dim FSize As Long

 Dim BytesRead As Long

 Dim BytesWritten As Long

 Dim hMem As Integer

 Dim lpMem As Long

 Dim r As Integer

 Me.Show

 'Insert the name of a bitmap or file that is greater than 64K.

 '256COLOR.BMP is less than 5K in size, however, the routine

 'below still demonstrates how to read and write a file of any

 'size

 InpFile = "C:\WINDOWS\256COLOR.BMP"

 OutFile = "C:\WINDOWS\TEST.BMP"

 'Get the size of the file to be read

 FSize = FileLen(InpFile)

 If FSize > 0 Then

 'Allocate a block of memory equal to the size of the input file.

 hMem = GlobalAlloc(GPTR, FSize)

 If hMem <> 0 Then

 lpMem = GlobalLock(hMem)

 'Read the file into memory

 hFile = OpenFile(InpFile, fileStruct, OF_READ Or

 OF_SHARE_DENY_NONE)

 BytesRead = hRead(hFile, ByVal lpMem, FSize)

 MsgBox Format(BytesRead) & " bytes read into memory"

 r = lClose(hFile)

 'Write the file back to disk to verify the file was

 'read correctly

 hFile = OpenFile(OutFile, fileStruct, OF_CREATE Or

 OF_WRITE Or OF_SHARE_DENY_NONE)

 BytesWritten = hWrite(hFile, ByVal lpMem, FSize)

 MsgBox Format(BytesWritten) & " bytes written to output file"

 r = lClose(hFile)

 'Free resources

 r = GlobalUnlock(hMem)

 r = GlobalFree(hMem)

 Else

 MsgBox "Not enough memory to store file"

 End If

 Else

 MsgBox "Input file is zero bytes in length"

 End If

 End

 End Sub

5. From the Run menu, choose Start (ALT, R, S) or press F5 to run the

 program. Form1 will be displayed and the program will end.

6. Use PaintBrush or some other bitmap editor to open C:\WINDOWS\TEST.BMP

 to verify that it is the same bitmap as C:\WINDOWS\256COLOR.BMP.

Additional reference words: 2.00 3.00 KBCategory: kbui kbprg kbcode KBSubcategory: APrgWindow

PRIVATE

Last Reviewed: June 21, 1995
© 1999 Microsoft Corporation. All rights reserved. Terms of Use.

