EINFÜGENGRAFIK \d "VBPJsmall.gif"

Reduce Long Waits with Threads

EINFÜGENGRAFIK \d \z "needleart.gif"

Write a generic thread manager that uses multithreading to sidestep time-consuming operations.
by R. Mark Tucker

Reprinted with permission from Visual Basic Programmer's Journal, 2/98, Volume 8, Issue 2, Copyright 1998, Fawcette Technical Publications, Palo Alto, CA, USA. To subscribe, call 1-800-848-5523, 650-833-7100, visit www.vbpj.com, or visit The Development Exchange at www.devx.com

The deluge of new uses for multithreading is a topic as hot as an Arizona summer, but the best, most practical use for it remains unchanged. A multi-threaded app keeps long operations from blocking the rest of your application, allowing your users to continue working as those operations complete in the background. This not only reduces your users' frustration, but also makes them more productive. For example, database queries, file I/O, and printer functions can all take an excessive amount of time, but multiple threads ensure your application doesn't grind to a halt as it waits for them to complete.

One way to implement multithreading in your apps is to write a generic thread manager (see Figure 1). A thread manager acts as a middleman between the client application and one or more objects that you want to run on separate threads. When the manager receives a request from the client to execute a long operation using a specific object, it assumes responsibility for completing the task and frees the client app to respond to more user requests. It is the thread manager's job to create the "managed" object on an individual thread, instruct it to perform its function, and clean up the memory used by the object when it completes its task. You can use the manager presented here in any project where an operation needs to occur on a separate thread. The manager can handle multiple "managed" objects from a single component or multiple components.

[image: image1.png]
Note that implementing multithreading is not a trivial task. One difficulty is determining what VB does for you behind the scenes, and figuring out when VB will actually create an object on a separate thread. This article doesn't explain how multi-threading works, but shows you what you need to do to put it to use in your applications. See Ted Pattison's article, "Master Multithreading-Carefully," in this issue for more information on the basics of multithreading. You can also find valuable resources on multithreading in the sidebar, "Do Your Homework First."

PRIVATE
Do Your Homework First

Multithreading in VB requires knowledge in many areas, some of which are new to VB5. These areas include automation, component instancing, interfaces, callbacks, and events. Though you might be tempted to jump right in and start coding, it's important to understand more than just the basics. Ignoring this advice might be likened to opening Pandora's box.

The first place to look is Visual Basic Books Online. Do a search on "threads" and read these articles and their associated links: "Scalability and Multithreading" and "Creating ActiveX Components." Next, search MSDN Library Online (www.microsoft.com/msdn) for the article, "Processes and Threads." There are also a number of valuable articles, including Daniel Appleman's "A Thread to Visual Basic" (www.desaware.com/desaware/thartrq.htm), Ted Pattison's "Create More Scalable Objects with DCOM" [VBPJ December 1997], Ibrahim Malluf's "Create Multithreaded Objects" [VBPJ May 1997], Lee The's "Inside VB" [VBPJ September 1997], and Deborah Kurata's "Program with Events" [VBPJ November 1997]. It's important that you assimilate and understand the concepts presented in these articles. -R.M.T.

No article about threads would be complete without a few words to the effect of, "You don't have to take up skydiving just because your friend has a plane." Multithreading makes a good deal of sense when you want to let your users continue working as a long operation executes, but there are many cases when multithreading would slow down or cripple your app. For example, if two tasks take about the same amount of time, a single processor can accomplish the tasks faster if you execute them one after the other. Multithreading would take longer in this case because of the extra overhead in managing the separate threads. The user would see a slower, less responsive app. Multithreading also complicates the debugging process.

How threads work
You need to take a careful look at when VB creates an object on a separate thread before you begin building the thread manager. The type of ActiveX component you choose to create, its threading model, an object's Instancing property, and how you instantiate the object all affect whether VB creates an object on a new thread, on an existing (single) thread, or in a separate process. If you don't handle this correctly, you could be creating new processes when you don't intend to.

Each thread belongs to its own apartment, and each apartment gets its own copy of global data and global objects in VB's implementation of apartment-model threading. Objects on the same thread can share variables declared as Public in a standard module. The danger is that you have little control over which objects will share a thread. As a general rule, you should avoid creating your own global variables in your multithreaded applications unless you know how VB will interpret them. Global variables can be useful, however, if you think of them in terms of apartments. For example, consider the App object, which VB creates in each apartment automatically. You can use the App.ThreadID property to obtain the Win32 thread ID that uniquely identifies each thread. The thread manager described in this article uses the thread ID to keep track of the objects it manages.

[image: image2.png]

Note that the Instancing property of an object in an ActiveX component affects where VB instantiates the object. If the object's Instancing property is set to SingleUse (or GlobalSingleUse), VB creates a new process (with a new primary thread) each time you use New or CreateObject in the client to instantiate the object. VB also creates that object in a new process if an object in the server creates another object using CreateObject, and that object has an Instancing property of SingleUse (see Figure 2). This option isn't available for ActiveX DLLs, however. This makes sense because an in-process component is created "in the same process" as its client. You can implement a form of "multithreading" without diving into threads too deeply by setting an object's Instancing property to SingleUse. This approach forces VB to create each object in its own process, which requires extra resources.

The Project Properties dialog determines which thread VB will create an object on when you set an object class's Instancing property to MultiUse or GlobalMultiUse (see Figure 3). Visual Basic provides three options for assigning objects to threads for out-of-process components: thread per object, single thread of execution, and thread pool.

[image: image3.png]
Single-threaded execution is the default when creating an ActiveX EXE component, and you use this for creating most of your components. Multithreaded components require that you choose one of the other options, however. You must specify the number of threads in the pool when you compile a component using the thread-pool option. This number often equals the number of processors on a multiprocessor system, but you might want to specify more than one thread on a single-processor system when you know that much of a thread's time will be in a blocked mode, waiting for another server.

VB creates an object on the next thread in a round-robin fashion when a client creates an object with New or CreateObject. If you use the New operator to create an object in a server, then the object is a dependent object and is created on the same thread. An object created within the server using CreateObject is treated as if the client created it, and VB creates it on the next thread. Note that each thread gets its own copy of global data and objects. You have no way of predicting which objects, aside from dependent objects, will share a thread and the global information.

Life is simpler when you compile using the thread-per-object option. This option allows you to create each object on its own thread, rather than the next thread in the pool. Each object also has its own App object, its own copy of global data, and its own copy of other global objects. The downside of this approach is that you have no control over how many objects (threads) are created. I created the sample project using VB5 Service Pack 2 (SP2). You don't need SP2 to write a thread manager, but there might be slight variations in how the project works if you use a different version.

Write a Thread Manager
Now that you know when VB creates a new thread, let's build a thread manager and a managed-thread object to complete a task asynchronously at the request of the client application. I chose to compile the SimpleThreadManager component as an apartment-threaded ActiveX DLL. If you prefer, you can compile the SimpleThreadManager as an ActiveX EXE. A DLL is faster, but if an error in the client causes the client to crash, any ActiveX DLLs also crash, and some manager tasks might not complete. Another disadvantage of an ActiveX DLL is that there might be times when the client would block the thread that it and the DLL share, and the thread manager would have to wait for the client to finish before the manager could continue.

The thread manager contains an internal collection of object references where each object is on its own thread. Each of these objects implements the IManagedThread interface:

IManagedThread.cls

Public Property Get ThreadID() As Long

End Property

Public Sub SetThreadManager _

 (ThreadManager As ThreadManager)

End Sub

Public Sub ReleaseThreadManager()

End Sub

Public Sub Execute(Async As Boolean, _

 Custom As Variant)

End Sub

The thread manager also handles creating and cleaning up threads. The CreateManagedThread function creates a new instance of a class based on the IManagedThread interface:

Private Function CreateManagedThread _

 (Class As String) As IManagedThread

 Dim objThread As IManagedThread

 Set objThread = CreateObject(Class)

 'tell object who its manager is

 objThread.SetThreadManager Me

 mcolThreads.Add objThread, "T" & _

 Str(objThread.ThreadID)

 Set CreateManagedThread = objThread

End Function

The CreateObject function allows the client application to specify the class (appname.objecttype) of the object to create. In this example, New and CreateObject both create the object on its own thread because the managed thread class is defined in an out-of-process component. The thread manager can handle many different objects by using CreateObject and making sure that every managed thread object implements the IManagedThread interface. Next, the created object receives a reference to its thread manager.

You want the thread to notify the thread manager when the managed thread finishes its task. You can't use events in this situation because the object reference is stored in a collection. Instead, use the thread ID as part of the key to store the object reference in the thread manager's collection. This is the only reference to the thread object while it is active. The thread-pool option wouldn't work in this situation because different objects on the same thread would have the same thread ID, and you would be trying to insert duplicate keys into the collection.

The Execute method is the only method you call from the client application. The first parameter allows the client to specify which managed object it wants the thread manager to create. The managed object encapsulates some specific job to be done. For example, assume you have an object called DoSomething contained in the ThingsToDo component. The client application calls the thread manager's Execute method, passing ThingsTo-Do.DoSomething in the class parameter, when it wants to perform an operation on a separate thread. The optional Custom parameter allows the client to pass parameters to the object and the object to return values to the client. This method calls CreateManagedThread to create an instance of that object. Next, the thread manager calls the managed object's Execute method, passing it the Custom data. Setting the Async parameter to True causes the managed object to execute asynchronously, and the ThreadManager to return control to the client application immediately, without blocking its thread:

Public Sub Execute(Class As String, _

 Optional Custom As Variant)

 Dim objThread As IManagedThread

 Set objThread = CreateManagedThread (Class)

 'asynchronous call to do task

 objThread.Execute True, Custom

 RaiseEvent Started(Custom)

 Set objThread = Nothing

End Sub

The managed thread employs a callback to call the CleanupThread method when it finishes its task or encounters an error:

Public Sub CleanupThread(ThreadID As Long, _

 Success As Boolean, Custom As Variant)

 Dim objThread As IManagedThread

 Dim strIndex As String

 strIndex = "T" & CStr(ThreadID)

 'break circular reference

 Set objThread = mcolThreads.Item(strIndex)

 objThread.ReleaseThreadManager

 'release reference to free thread

 mcolThreads.Remove strIndex

 RaiseEvent Completed(Success, Custom)

End Sub

The thread manager then calls the ReleaseThreadManager method of the managed-thread object to break its reference to the manager. The thread manager removes the object reference to the managed thread from its collection, and the thread is freed because this is the only remaining reference.

Create a Managed-Thread Component
Next, you need to create a managed-thread object so the thread manager has something to manage. A managed-thread object can perform any task you want to execute without blocking your client application. To keep this example simple, the managed-thread object calls VB's Dir function using a passed string, then calls the Sleep API function to pause the object's thread for a specified time. The pause allows you to see whether the client application is blocked by the managed object's thread. You can also use PView to see the number of threads within the server process. Now, call the managed-thread object FileSearch. Set the Instancing property of the FileSearch object to MultiUse, and compile MultithreadComp as an ActiveX EXE using the thread-per-object threading model.

The managed-thread component also contains a standard module to handle calls to the timer functions in the Windows API (see Listing 1). This module declares the timer functions and provides a callback function, TimerProc, that allows the object to execute asynchronously. The module contains the only global variable in the server, which you set in the object's Class_Initialize event. If you prefer, you can compile the timer code into an ActiveX DLL that the managed-thread class uses, eliminating the global variable entirely. You can find an example of this in the Xtimers project that ships with VB.

Listing 1

PRIVATE

ThreadTimer.bas

Private Declare Function SetTimer Lib _

 "user32" (ByVal hwnd As Long, _

 ByVal nIDEvent As Long, ByVal uElapse As Long, _

 ByVal lpTimerFunc As Long) As Long

Private Declare Function KillTimer Lib _

 "user32" (ByVal hwnd As Long, _

 ByVal nIDEvent As Long) As Long

Private mlngTimerID As Long

Private mvarCustom As Variant

Public gobjThread As IManagedThread

Private Sub TimerProc(ByVal hwnd As Long, _

 ByVal msg As Long, ByVal idEvent As Long, _

 ByVal curTime As Long)

 StopTimer

 gobjThread.Execute False, mvarCustom

 mvarCustom = Empty

 Set gobjThread = Nothing

End Sub

Public Sub StartTimer(Custom As Variant)

 mvarCustom = Custom

 mlngTimerID = SetTimer(0, 0, 100, _

 AddressOf TimerProc)

End Sub

Public Sub StopTimer()

 If mlngTimerID > 0 Then

 KillTimer 0, mlngTimerID

 mlngTimerID = 0

 End If

End Sub

Listing 1 Implement an Asynchronous Method Call. The THREADTIMER.BAS module contains the code to create a formless timer. It is contained in the same component as the managed-thread objects and is used when the ThreadManager calls a managed object's Execute method. The object then starts the timer and returns control back to the ThreadManager, which returns control back to the client. Several managed objects within the same process can share this module because of the way VB implements apartment threading.

The FileSearch object implements the IManagedThread interface and creates a private object reference to the thread manager (see Listing 2). The private ExecuteTask method contains the actual work that the FileSearch object will do. The managed thread tells the thread manager to release it by calling the CleanupThread method when the FileSearch object finishes its task. The remaining property and methods are part of the IManagedThread interface. The Execute method calls the managed thread's private ExecuteTask method or starts the timer, depending on the value of the Async parameter. The SetThreadManager and ReleaseThreadManager methods simply manipulate the private object reference to the thread manager.

Listing 2

PRIVATE

FileSearch.cls

Private Declare Sub Sleep Lib "kernel32" _

 (ByVal dwMilliseconds As Long)

Implements IManagedThread

Private mobjThreadManager As ThreadManager

Private Sub Class_Initialize()

 Set gobjThread = Me

End Sub

Private Sub Class_Terminate()

 StopTimer

 If Not mobjThreadManager Is Nothing _

 Then Set mobjThreadManager = Nothing

 If Not gobjThread Is Nothing Then _

 Set gobjThread = Nothing

End Sub

Private Sub ExecuteTask(Custom As Variant)

 Dim strSearch As String

 Dim lngPause As Long

 Dim colValues As Collection

 '*************************************

 'Insert Task to be accomplished here!

 'get passed values

 strSearch = Custom(0)

 lngPause = Custom(1)

 'make room for return values

 ReDim Preserve Custom(2)

 Set colValues = FindFiles(strSearch)

 If colValues.Count = 0 Then

 Custom(2) = Empty

 Else

 Set Custom(2) = colValues

 End If

 If lngPause > 0 Then Sleep lngPause

 '*************************************

 'tell Thread Manager to release its

 'reference to the object

 mobjThreadManager.CleanupThread _

 App.ThreadID, True, Custom

End Sub

Private Sub IManagedThread_Execute(Async As _

 Boolean, Custom As Variant)

 If Async = True Then

 'Execute task asynchronously

 StartTimer Custom

 Else

 'Execute task synchronously

 ExecuteTask Custom

 End If

End Sub

Private Sub

 IManagedThread_ReleaseThreadManager()

 Set mobjThreadManager = Nothing

End Sub

Private Sub IManagedThread_SetThreadManager _

 (ThreadManager As ThreadManager)

 Set mobjThreadManager = ThreadManager

End Sub

Private Property Get _

 IManagedThread_ThreadID() As Long

 IManagedThread_ThreadID = App.ThreadID

End Property

Private Function FindFiles(Search As String) As _

 Collection

 Dim strValue As String

 Dim colValues As New Collection

 strValue = Dir(Search, vbNormal)

 Do While strValue <> ""

 colValues.Add strValue

 strValue = Dir

 Loop

 Set FindFiles = colValues

 Set colValues = Nothing

End Function

Listing 2 Write a Search Thread. The FileSearch object implements the IManagedThread interface and creates a private object reference to the thread manager. The FileSearch object is a simple example of an operation on one thread executing without blocking the client thread. The code, except for the task you want to perform (found in the ExecuteTask method), is largely cut-and-paste.

Test the Components
You must compile the SimpleThreadManager DLL and the MultithreadComp EXE to test the components, starting with the SimpleThreadManager DLL. It is important that you compile them in the correct order because both the client and server contain a reference to the thread-manager component. It's possible to do some limited end-to-end testing using the VB debugger, but you can't do a full test without compiling because the VB IDE is single-threaded.

Start by running the SimpleThread-Manager project, then open the Multi-threadComp project in another instance of VB and make sure its reference is set to the thread-manager project and not to the compiled DLL. Next, run the MultithreadComp project. Load the client application in a third instance of VB, and set its reference to the thread-manager project. Run the client. Set breakpoints wherever you want, and click on the Start button on the client-tester app. You should be able to trace the execution throughout all three projects at this point. Note that the thread ID of all objects created by the ThreadManager is the same, so you can only trace the creation of the first object. The client tells the ThreadManager to execute some task by calling its Execute method and passing it the appname.objecttype of the class that handles that task. The call for the FileSearch operation looks like this:

mobjThreadManager.Execute _

 "MultithreadComp.FileSearch"

This call returns immediately, and the client is free to perform other tasks. If you use WithEvents to create the instance of the ThreadManager, the client can receive the ThreadManager's Started, Completed, and Error events. The Execute method also allows for an optional variant argument to pass custom data to and receive values back from the threaded object. In this example, you pass FileSearch a search string and a pause value. FileSearch then returns a collection of strings with names of all files found in the search directory.

[image: image4.png]

You can now see VB multithreading in action. Each time you click on the Start button, the thread manager creates a new thread. You can view these threads with the PView program (see Figure 4), which you find in the PView directory under the Tools menu on your VB CD. When the thread count drops back to zero, it means that no object in MultithreadComp is referenced, and the component is unloaded.

That's about it. Programming threads in VB requires a clear understanding of many topics, but there is a big payoff for putting in the time required. The thread manager I've shown you how to create is simply a starting point. You can augment or change the functionality of the thread manager in a number of ways. For example, you might add a MaxThread property to control the number of threads the manager can create. The manager might store requests for threads and create them when another thread is complete. This would allow you to control the number of threads created at run time when you compile with the thread-per-object option.

You also might implement an IThreadManager interface in the thread manager. This would allow you to create different thread managers, while ensuring that your ManagedThread objects can be used with any of them. If you add such an interface, you should probably define the IThreadManager and IManagedThread interfaces in a separate typelib. The client, thread manager, and server objects would then reference that typelib. I'm sure you have your own ideas for using and extending this thread manager as well. Regardless of how you choose to augment or change the thread manager's functionality, your users no longer have to wait for a single, long operation to finish before they can continue working.

R. Mark Tucker is a consultant with PSC Inc., a subsidiary of Data Processing Resources Corp. (DPRC). He specializes in client/server development and component design. Mark graduated from Brigham Young University with a B.S. degree in management information systems and currently lives and works in the Phoenix area. Reach him at mtucker@iname.com.

[image: image5.png]
Send feedback to MSDN. Look here for MSDN Online resources.

Creating Multi-Threaded VB5/SP2 Apps

Daniel Appleman
Have you noticed that Dan has avoided discussing multi-threading in VB5? The reason is simple: He didn't think it was particularly safe to create multi-threaded applications with the original version of VB5. But now that Service Pack 2 is available, it's a different story.
Several people have recently asked me how to create multiple threads in VB5 applications. Some have mentioned the CreateThread API and wondered why I didn't discuss it in my Win32 API book. Well, I'll have a few things to say about the CreateThread API later. You see, I believe it's my responsibility to address not only what you can do with VB, but what you should do as well-and the CreateThread API opens a nest of problems that programmers should face with trepidation, if not outright terror. For the past couple of months I've been answering VB threading inquiries with a cryptic "just wait." I was using the beta version of the new VB Service Pack 2 (SP2), so I knew what was coming. This update to VB5 allows you to create multi-threaded VB5 applications safely.

Now, if you aren't familiar with multi-threading, this column isn't going to make much sense to you. One good source of information is Chapter 14 of my book Developing ActiveX Components with Visual Basic 5.0: A Guide to the Perplexed. This article assumes that you're familiar with multi-threading as it was implemented in VB5.

What a difference a few dialog controls make
In the original VB5, the multi-threading capabilities of an ActiveX server were set in the Project Properties (General) dialog box. This dialog box included a check box titled "Unattended Execution" and two option buttons: one marked "Thread per object," the other "Thread Pool," with the number of threads specified in a text box.

The "Unattended Execution" check box first prevented the server from using any user interface elements such as forms or message boxes. This was the first requirement for multi-threading with VB, because the VB forms engine was not thread-safe. VB uses the so-called "apartment model" of multi-threading, in which all of your components' global variables are thread-specific. In other words, VB makes a separate copy of all of your global variables for each thread. This eliminates most shared memory and synchronization problems, making apartment-model multi-threading relatively safe and easy to use. But because VB5 could not isolate form level variables among threads, it required that multi-threading servers have no user interface elements.

With VB5 SP2, Microsoft figured out how to isolate forms between threads, extending the forms engine to run in the apartment model as well. The "Unattended Execution" check box is still there, but now it's completely independent of the server's multi-threading capabilities.

The multi-threading options are selected in two ways:

· ActiveX DLL servers and controls use the "Threading Model" combo box to select between two available threading models-Apartment Model or Single-Threaded.

· ActiveX EXE servers use the "Thread per object" or "Thread Pool" option buttons as before. A non-multi-threading EXE server is one that uses a thread pool with a single thread.

In other words, setting Unattended Execution has nothing to do with multi-threading.

The impact of this change on DLL servers is both profound and trivial at the same time. Profound, in that ActiveX DLL servers can now include forms and, more importantly, that ActiveX controls can be marked for apartment-model multi-threading-allowing them to run more efficiently on multi-threading clients such as Internet Explorer. Trivial, in that this requires virtually no effort on the part of the programmer besides changing a combo box option and testing the server using a multi-threading client.

The impact of this change on EXE servers is really limited to one small but crucial area. For most servers there will be no change at all-adding forms to EXE servers that are accessed from other applications is generally pointless. But this change does allow you to create true multi-threading clients using VB. For the rest of this article, we'll explore some of the subtleties involved in doing this.

Multi-threading clients Q&A

Implementing multi-threaded clients using VB5 SP2 raises a number of interesting questions. Rather than simply showing you the answers and resulting code, I've decided to illustrate the techniques involved by using a question-and-answer format, where the questions are ones that I asked myself when first starting out. Keep in mind that we're talking about some very new capabilities in VB, so I haven't had much time to work with them. I won't promise that these are the best possible answers-only that they work. I'll try to suggest other possible solutions along the way as well.

Which threading model should I use?

This is an easy one. A multi-threading client application must be created as an ActiveX EXE server. It's the only model that supports the creation of objects on their own threads. Set the threading option to "Thread per object."

How can I make an ActiveX EXE server behave like a standalone application?

Nothing has changed from the original VB5. You'll need to create a module that contains a Sub Main and set Sub Main as the startup object. Then you'll look at the App.StartMode property-if it's vbSModeStandalone, the server was started as a standalone program and you can show the main form. Once the main form is shown, the server will not terminate until the form is closed and terminated.

If App.StartMode = vbSModeStandalone Then

frmMain.Show

End If

Wait-I have some objects that I don't want to be created in their own threads!

Your application will probably have many objects, only one or two of which you'd want to run in their own thread. Fortunately, VB makes it easy to control which thread an object is created in. Say you have an object called "clsBackground" in a server called ThreadTest1. The following code will create the object in a new thread:

Dim s As clsBackground

 Set s = CreateObject("ThreadTest1.clsBackground")

The following code will create the object in the current thread:

Dim s As clsBackground

 Set s = New clsBackground

You must use the CreateObject function to create an object in its own thread.

How can I prevent other applications from accessing my public objects?

One of the side effects of this approach to multi-threading is that your application must publicly expose the objects that you wish to run in their own threads. But you probably won't want other applications to access those objects. Disabling an object is easy-you can raise an error during its Initialize event and otherwise disable its operation. Make the termination as ugly as you'd like-nobody is supposed to access that object externally in the first place.

The trick is knowing when the object has been created within your own application.

The solution lies again in the nature of apartment-model threading. Every time a thread is created, the application's Sub Main function is called; this means that you can look at the App.StartMode property and determine whether the thread was started externally. You can then set a global flag (which, of course, is specific to that thread, so it won't interfere with other objects) so that the object will know during its Initialize event whether or not it should enable itself. An example of this is shown in the following code from the code module:

Public BlockLoad As Boolean

Public Sub Main()

If App.StartMode <> vbSModeStandalone Then

 BlockLoad = True

 Exit Sub

 End If

 …. Do other initialization here

End If

And this code in the class module:

Private Sub Class_Initialize()

 If BlockLoad Then

 Err.Raise vbObjectError + 1000, "clsBackground",_

 "Can't initialize object"

 Else

 f.Show

 End If

End Sub

You'll need to do this with every public class that you don't want other applications to access.

How can I tell whether Sub Main is being called due to an initial program execution or the start of a new thread?

The first time Sub Main is called, it will be due to the initial launch of a program. But Sub Main will be called again for each new thread. At first glance, you might think to use a global variable to flag whether this is the first call or not, but remember-global variables are thread-specific when using apartment-model threading. One possible approach is shown in the following code:

Private Declare Function FindWindow Lib "user32" _

 Alias "FindWindowA" (ByVal lpClassName As String,_

 ByVal lpWindowName As String) As Long

Private Declare Function GetWindowThreadProcessId _

 Lib "user32" (ByVal hwnd As Long, lpdwProcessId As _

 Long) As Long

Private Declare Function GetCurrentProcessId Lib _

 "kernel32" () As Long

Public BlockLoad As Boolean

Public Sub Main()

 Dim pid As Long

 Dim OtherWnd As Long

 If App.StartMode <> vbSModeStandalone Then

 BlockLoad = True

 Exit Sub

 End If

 If App.PrevInstance = True Then

 MsgBox "Can only run one instance of this app"

 Exit Sub

 End If

 ' Is the main window already up?

 OtherWnd = FindWindow(vbNullString, "Foreground _

 Form")

 If OtherWnd <> 0 Then

 ' Make sure it's the same process - don't want

 ' to interfere with others

 Call GetWindowThreadProcessId(OtherWnd, pid)

 If pid = GetCurrentProcessId() Then

 ' Main window is up in the same process,

 ' so exit

 Exit Sub

 End If

 End If

 frmMain.Show ' Show the main window

End Sub

The server loads the main application form the first time it's called. During subsequent calls, the Sub Main function checks to see whether the main form exists by looking for a window with the correct caption that belongs to the same process. Actually, this code is flawed in that it only checks the first window with the specified caption. If you have another application that uses the same window caption, this code might fail. A better solution would be to enumerate all of the top-level windows looking for one with the correct characteristics. Enumeration techniques can be found in Chapter 5 of my Visual Basic 5.0 Programmer's Guide to the Win32 API. If you used the enumeration approach, you could also change the application to allow more than one instance to run at a time. The single instance limitation is placed here because you can't predict which server will implement a particular object if you have more than one server running.

The preceding code combines the techniques described earlier to demonstrate a fairly complete Sub Main implementation. The missing piece of the puzzle is the background class, whose implementation code is shown here:

Dim f As New frmBackground

Private Sub Class_Initialize()

 If BlockLoad Then

 Err.Raise vbObjectError + 1000, "clsBackground",_

 "Can't initialize object"

 Else

 f.Show

 End If

End Sub

This example demonstrates the creation of a form in its own thread. The class simply shows an instance of the form. The Class_Initialize event is already running in the new thread, so the New and Show operations will create the form in this thread as well.

Are there other ways to communicate between apartments?

There are lots of ways to communicate between apartments, all using various API techniques. You can use Windows synchronization objects such as mutexes, semaphores, and events. You can use memory-mapped files to share memory between apartments. You can have your main thread pass object references to the other threads-VB will correctly create proxies for the objects and marshal data between them. I won't go into details here, but don't be surprised if it shows up as the topic of a future column.

Should you create multi-threading applications in the first place?

Offhand, I can think of two reasons why you'd want to create a multi-threading application:

· To create a thread that performs a background operation or wait operation.

· To create a form that runs in its own thread. This is the technique that programs such as Internet Explorer and Netscape Navigator use to allow individual browser windows to run independently.

I expect the first of these options to be more common. You shouldn't use a form in a separate thread unless your application's design provides a compelling reason to do so.

Now show me an example!
The ThreadTest1 example is a very simple multi-threaded client. The main window has a button that allows you to display the background forms in their own threads using the following code:

Private Sub frmForeground_Click()

 Dim s As clsBackground

 Set s = CreateObject("ThreadTest1.clsBackground")

End Sub

Each background form has a button that starts a very long loop operation, as follows:

Private Sub Command1_Click()

 Dim l&

 For l = 1 To 10000

 Label2.Caption = Str$(l)

 Label2.Refresh

 Next l

End Sub

Each form also has a label control on which it displays its current thread identifier. Try running the program first in VB (be sure the project startup setting is StandAlone). You'll see that each form runs in the same thread, and that a long operation on one form blocks the operation of all the others. The forms and objects exist in a single thread because the VB environment itself doesn't support multi-threading.

Now compile it to an executable and try running the executable. You'll see that each form runs in its own thread, and that a long operation on one form doesn't interfere with the others.

What about the CreateThread API?
You've seen how VB5 can now be used to create true multi-threaded applications. But if you've been reading other industry publications, you might be wondering why I haven't discussed the use of the CreateThread API with VB. Well, I've seen those articles, and I've done quite a bit of work with the CreateThread API-and I have a lot to say about the subject. You see, the CreateThread API can be used effectively from VB-but only with great care and only by observing certain precautions that seem to have been forgotten in many of the discussions on the subject.

You can find out more on this topic, because this month's column also includes a two-for-one special. A feature article that I've written about using the CreateThread API from VB called "A Thread to Visual Basic" can be found at http://www.desaware.com/thread.htm. You'll need to enter the code VBDV10 to view the article (the article is free-we're doing this as a form of market research). I think you'll find it quite interesting. s

Download DAN1197.ZIP at www.pinpub.com/vbd

Daniel Appleman, author of the Visual Basic Programmer's Guide to the Windows API, the Visual Basic Programmer's Guide to the Win32 API, How Computer Programming Works, and Developing ActiveX Components with Visual Basic 5.0: A Guide to the Perplexed, has been developing applications for Microsoft Windows since its release in 1985. In 1991 he founded Desaware Inc., a Campbell, CA-based software company focusing on component-based software and advanced tools for developers. dan@desaware.com, 70303.2252@compuserve.com.
[image: image6.png]
Send feedback to MSDN. Look here for MSDN Online resources.

Creating Multi-Threaded VB5/SP2 Apps

Daniel Appleman
Have you noticed that Dan has avoided discussing multi-threading in VB5? The reason is simple: He didn't think it was particularly safe to create multi-threaded applications with the original version of VB5. But now that Service Pack 2 is available, it's a different story.
Several people have recently asked me how to create multiple threads in VB5 applications. Some have mentioned the CreateThread API and wondered why I didn't discuss it in my Win32 API book. Well, I'll have a few things to say about the CreateThread API later. You see, I believe it's my responsibility to address not only what you can do with VB, but what you should do as well-and the CreateThread API opens a nest of problems that programmers should face with trepidation, if not outright terror. For the past couple of months I've been answering VB threading inquiries with a cryptic "just wait." I was using the beta version of the new VB Service Pack 2 (SP2), so I knew what was coming. This update to VB5 allows you to create multi-threaded VB5 applications safely.

Now, if you aren't familiar with multi-threading, this column isn't going to make much sense to you. One good source of information is Chapter 14 of my book Developing ActiveX Components with Visual Basic 5.0: A Guide to the Perplexed. This article assumes that you're familiar with multi-threading as it was implemented in VB5.

What a difference a few dialog controls make
In the original VB5, the multi-threading capabilities of an ActiveX server were set in the Project Properties (General) dialog box. This dialog box included a check box titled "Unattended Execution" and two option buttons: one marked "Thread per object," the other "Thread Pool," with the number of threads specified in a text box.

The "Unattended Execution" check box first prevented the server from using any user interface elements such as forms or message boxes. This was the first requirement for multi-threading with VB, because the VB forms engine was not thread-safe. VB uses the so-called "apartment model" of multi-threading, in which all of your components' global variables are thread-specific. In other words, VB makes a separate copy of all of your global variables for each thread. This eliminates most shared memory and synchronization problems, making apartment-model multi-threading relatively safe and easy to use. But because VB5 could not isolate form level variables among threads, it required that multi-threading servers have no user interface elements.

With VB5 SP2, Microsoft figured out how to isolate forms between threads, extending the forms engine to run in the apartment model as well. The "Unattended Execution" check box is still there, but now it's completely independent of the server's multi-threading capabilities.

The multi-threading options are selected in two ways:

· ActiveX DLL servers and controls use the "Threading Model" combo box to select between two available threading models-Apartment Model or Single-Threaded.

· ActiveX EXE servers use the "Thread per object" or "Thread Pool" option buttons as before. A non-multi-threading EXE server is one that uses a thread pool with a single thread.

In other words, setting Unattended Execution has nothing to do with multi-threading.

The impact of this change on DLL servers is both profound and trivial at the same time. Profound, in that ActiveX DLL servers can now include forms and, more importantly, that ActiveX controls can be marked for apartment-model multi-threading-allowing them to run more efficiently on multi-threading clients such as Internet Explorer. Trivial, in that this requires virtually no effort on the part of the programmer besides changing a combo box option and testing the server using a multi-threading client.

The impact of this change on EXE servers is really limited to one small but crucial area. For most servers there will be no change at all-adding forms to EXE servers that are accessed from other applications is generally pointless. But this change does allow you to create true multi-threading clients using VB. For the rest of this article, we'll explore some of the subtleties involved in doing this.

Multi-threading clients Q&A

Implementing multi-threaded clients using VB5 SP2 raises a number of interesting questions. Rather than simply showing you the answers and resulting code, I've decided to illustrate the techniques involved by using a question-and-answer format, where the questions are ones that I asked myself when first starting out. Keep in mind that we're talking about some very new capabilities in VB, so I haven't had much time to work with them. I won't promise that these are the best possible answers-only that they work. I'll try to suggest other possible solutions along the way as well.

Which threading model should I use?

This is an easy one. A multi-threading client application must be created as an ActiveX EXE server. It's the only model that supports the creation of objects on their own threads. Set the threading option to "Thread per object."

How can I make an ActiveX EXE server behave like a standalone application?

Nothing has changed from the original VB5. You'll need to create a module that contains a Sub Main and set Sub Main as the startup object. Then you'll look at the App.StartMode property-if it's vbSModeStandalone, the server was started as a standalone program and you can show the main form. Once the main form is shown, the server will not terminate until the form is closed and terminated.

If App.StartMode = vbSModeStandalone Then

frmMain.Show

End If

Wait-I have some objects that I don't want to be created in their own threads!

Your application will probably have many objects, only one or two of which you'd want to run in their own thread. Fortunately, VB makes it easy to control which thread an object is created in. Say you have an object called "clsBackground" in a server called ThreadTest1. The following code will create the object in a new thread:

Dim s As clsBackground

 Set s = CreateObject("ThreadTest1.clsBackground")

The following code will create the object in the current thread:

Dim s As clsBackground

 Set s = New clsBackground

You must use the CreateObject function to create an object in its own thread.

How can I prevent other applications from accessing my public objects?

One of the side effects of this approach to multi-threading is that your application must publicly expose the objects that you wish to run in their own threads. But you probably won't want other applications to access those objects. Disabling an object is easy-you can raise an error during its Initialize event and otherwise disable its operation. Make the termination as ugly as you'd like-nobody is supposed to access that object externally in the first place.

The trick is knowing when the object has been created within your own application.

The solution lies again in the nature of apartment-model threading. Every time a thread is created, the application's Sub Main function is called; this means that you can look at the App.StartMode property and determine whether the thread was started externally. You can then set a global flag (which, of course, is specific to that thread, so it won't interfere with other objects) so that the object will know during its Initialize event whether or not it should enable itself. An example of this is shown in the following code from the code module:

Public BlockLoad As Boolean

Public Sub Main()

If App.StartMode <> vbSModeStandalone Then

 BlockLoad = True

 Exit Sub

 End If

 …. Do other initialization here

End If

And this code in the class module:

Private Sub Class_Initialize()

 If BlockLoad Then

 Err.Raise vbObjectError + 1000, "clsBackground",_

 "Can't initialize object"

 Else

 f.Show

 End If

End Sub

You'll need to do this with every public class that you don't want other applications to access.

How can I tell whether Sub Main is being called due to an initial program execution or the start of a new thread?

The first time Sub Main is called, it will be due to the initial launch of a program. But Sub Main will be called again for each new thread. At first glance, you might think to use a global variable to flag whether this is the first call or not, but remember-global variables are thread-specific when using apartment-model threading. One possible approach is shown in the following code:

Private Declare Function FindWindow Lib "user32" _

 Alias "FindWindowA" (ByVal lpClassName As String,_

 ByVal lpWindowName As String) As Long

Private Declare Function GetWindowThreadProcessId _

 Lib "user32" (ByVal hwnd As Long, lpdwProcessId As _

 Long) As Long

Private Declare Function GetCurrentProcessId Lib _

 "kernel32" () As Long

Public BlockLoad As Boolean

Public Sub Main()

 Dim pid As Long

 Dim OtherWnd As Long

 If App.StartMode <> vbSModeStandalone Then

 BlockLoad = True

 Exit Sub

 End If

 If App.PrevInstance = True Then

 MsgBox "Can only run one instance of this app"

 Exit Sub

 End If

 ' Is the main window already up?

 OtherWnd = FindWindow(vbNullString, "Foreground _

 Form")

 If OtherWnd <> 0 Then

 ' Make sure it's the same process - don't want

 ' to interfere with others

 Call GetWindowThreadProcessId(OtherWnd, pid)

 If pid = GetCurrentProcessId() Then

 ' Main window is up in the same process,

 ' so exit

 Exit Sub

 End If

 End If

 frmMain.Show ' Show the main window

End Sub

The server loads the main application form the first time it's called. During subsequent calls, the Sub Main function checks to see whether the main form exists by looking for a window with the correct caption that belongs to the same process. Actually, this code is flawed in that it only checks the first window with the specified caption. If you have another application that uses the same window caption, this code might fail. A better solution would be to enumerate all of the top-level windows looking for one with the correct characteristics. Enumeration techniques can be found in Chapter 5 of my Visual Basic 5.0 Programmer's Guide to the Win32 API. If you used the enumeration approach, you could also change the application to allow more than one instance to run at a time. The single instance limitation is placed here because you can't predict which server will implement a particular object if you have more than one server running.

The preceding code combines the techniques described earlier to demonstrate a fairly complete Sub Main implementation. The missing piece of the puzzle is the background class, whose implementation code is shown here:

Dim f As New frmBackground

Private Sub Class_Initialize()

 If BlockLoad Then

 Err.Raise vbObjectError + 1000, "clsBackground",_

 "Can't initialize object"

 Else

 f.Show

 End If

End Sub

This example demonstrates the creation of a form in its own thread. The class simply shows an instance of the form. The Class_Initialize event is already running in the new thread, so the New and Show operations will create the form in this thread as well.

Are there other ways to communicate between apartments?

There are lots of ways to communicate between apartments, all using various API techniques. You can use Windows synchronization objects such as mutexes, semaphores, and events. You can use memory-mapped files to share memory between apartments. You can have your main thread pass object references to the other threads-VB will correctly create proxies for the objects and marshal data between them. I won't go into details here, but don't be surprised if it shows up as the topic of a future column.

Should you create multi-threading applications in the first place?

Offhand, I can think of two reasons why you'd want to create a multi-threading application:

· To create a thread that performs a background operation or wait operation.

· To create a form that runs in its own thread. This is the technique that programs such as Internet Explorer and Netscape Navigator use to allow individual browser windows to run independently.

I expect the first of these options to be more common. You shouldn't use a form in a separate thread unless your application's design provides a compelling reason to do so.

Now show me an example!
The ThreadTest1 example is a very simple multi-threaded client. The main window has a button that allows you to display the background forms in their own threads using the following code:

Private Sub frmForeground_Click()

 Dim s As clsBackground

 Set s = CreateObject("ThreadTest1.clsBackground")

End Sub

Each background form has a button that starts a very long loop operation, as follows:

Private Sub Command1_Click()

 Dim l&

 For l = 1 To 10000

 Label2.Caption = Str$(l)

 Label2.Refresh

 Next l

End Sub

Each form also has a label control on which it displays its current thread identifier. Try running the program first in VB (be sure the project startup setting is StandAlone). You'll see that each form runs in the same thread, and that a long operation on one form blocks the operation of all the others. The forms and objects exist in a single thread because the VB environment itself doesn't support multi-threading.

Now compile it to an executable and try running the executable. You'll see that each form runs in its own thread, and that a long operation on one form doesn't interfere with the others.

What about the CreateThread API?
You've seen how VB5 can now be used to create true multi-threaded applications. But if you've been reading other industry publications, you might be wondering why I haven't discussed the use of the CreateThread API with VB. Well, I've seen those articles, and I've done quite a bit of work with the CreateThread API-and I have a lot to say about the subject. You see, the CreateThread API can be used effectively from VB-but only with great care and only by observing certain precautions that seem to have been forgotten in many of the discussions on the subject.

You can find out more on this topic, because this month's column also includes a two-for-one special. A feature article that I've written about using the CreateThread API from VB called "A Thread to Visual Basic" can be found at http://www.desaware.com/thread.htm. You'll need to enter the code VBDV10 to view the article (the article is free-we're doing this as a form of market research). I think you'll find it quite interesting. s

Download DAN1197.ZIP at www.pinpub.com/vbd

Daniel Appleman, author of the Visual Basic Programmer's Guide to the Windows API, the Visual Basic Programmer's Guide to the Win32 API, How Computer Programming Works, and Developing ActiveX Components with Visual Basic 5.0: A Guide to the Perplexed, has been developing applications for Microsoft Windows since its release in 1985. In 1991 he founded Desaware Inc., a Campbell, CA-based software company focusing on component-based software and advanced tools for developers. dan@desaware.com, 70303.2252@compuserve.com.

Send feedback to MSDN. Look here for MSDN Online resources.

